
LLNL-JRNL-421803

Semantic-Aware Automatic Parallelization
of Modern Applications Using High-Level
Abstractions

C. Liao, D. J. Quinlan, J. J. Willcock, T. Panas

December 23, 2009

the International Journal of Parallel Programming

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Noname manuscript No.
(will be inserted by the editor)

Semantic-Aware Automatic Parallelization of Modern
Applications Using High-Level Abstractions

Chunhua Liao · Daniel J. Quinlan ·
Jeremiah J. Willcock · Thomas Panas

the date of receipt and acceptance should be inserted later

Abstract Automatic introduction of OpenMP for sequential applications has
attracted significant attention recently because of the proliferation of multi-
core processors and the simplicity of using OpenMP to express parallelism for
shared-memory systems. However, most previous research has only focused
on C and Fortran applications operating on primitive data types. Modern
applications using high-level abstractions, such as C++ STL containers and
complex user-defined class types, are largely ignored due to the lack of re-
search compilers that are readily able to recognize high-level object-oriented
abstractions and leverage their associated semantics. In this paper, we use
a source-to-source compiler infrastructure, ROSE, to explore compiler tech-
niques to recognize high-level abstractions and to exploit their semantics for
automatic parallelization. Several representative parallelization candidate ker-
nels are used to study semantic-aware parallelization strategies for high-level
abstractions, combined with extended compiler analyses. Preliminary results
have shown that semantics of abstractions can help extend the applicability
of automatic parallelization to modern applications and expose more oppor-
tunities to take advantage of multicore processors.

Keywords automatic parallelization · high-level abstractions · semantics ·
ROSE · OpenMP

C. Liao · D.J. Quinlan · T. Panas
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA 94551
E-mail: {liao6,dquinlan,panas2}@llnl.gov

J.J. Willcock
Computer Science Department
Indiana University
Lindley Hall Room 215
150 S. Woodlawn Ave.
Bloomington, IN, 47404
E-mail: jewillco@osl.iu.edu

2

1 Introduction

Today’s multicore processors have been forcing application developers to par-
allelize legacy sequential codes and/or write new parallel applications if they
want to take advantage of shared-memory parallelism supported by hardware.
However, parallel programming is never an easy task for users, given the stun-
ning work to deal with extra issues in parallel computing, such as dependencies,
synchronization, load balancing, and race conditions. Therefore, parallelizing
compilers and tools are playing increasingly important roles in allowing the
full utilization of new computer systems and enhancing the productivity of
users.

OpenMP [21] is a simple and portable parallel programming model that
extends existing programming languages like C/C++ and Fortran 77/90 to in-
clude additional parallel semantics. The extensions OpenMP provides contain
compiler directives, user level runtime routines and environment variables.
Programmers can use OpenMP to express parallelization opportunities and
strategies for applications. Moreover, the simple API provided by OpenMP
has attracted parallelizing compilers and tools [5, 14] to use OpenMP as a
target for interactive or automatic parallelization.

Although numerous parallelizing compilers [6, 33] and tools [20, 35] have
been presented during the past decades, most of them focus only on C and/or
Fortran applications operating on primitive data types. On the other hand,
modern object-oriented languages, especially C++, are widely used to develop
scientific computing applications today. Those applications are often writ-
ten with various standard and/or user-defined high-level abstractions, such
as those in the C++ Standard Template Library (STL), now part of the C++
standard. High-level abstractions expose user-friendly interfaces and hide low-
level details, therefore the use of abstractions can substantially enhance code
reuse and accelerate programming productivity. While high-level abstractions
successfully hide their implementation details and are useful to users for this
purpose, they significantly impede static code analyses applied to their com-
plex implementations. Typically, significant information about the abstrac-
tions is lost during the compiler’s lowering to a simple intermediate represen-
tation (IR). Thus, compilers are often forced to make conservative assumptions
for applications using such abstractions and are not able to apply many opti-
mizations, including automatic parallelization.

In this paper, we use a source-to-source compiler infrastructure, ROSE [26],
to explore compiler techniques to recognize high-level abstractions and to ex-
ploit their semantics for automatic parallelization. Our goal is to automate
the process of migrating existing sequential C++ applications to multicore
machines and to assist in developing new parallel applications. Specifically,
our work addresses the concerns of parallelism for three target audiences: 1)
users with legacy code (C/C++) using standard abstractions (STL, etc.), 2)
users and library writers with domain-specific abstractions (user-defined array
classes, etc.) that have semantic properties that match those of the abstrac-
tions we make available, 3) library developers who are developing domain-

3

specific abstractions for users and leveraging the semantics using their own
semantic specifications (ones that we do not define).

The remainder of this paper is organized as follows. The ROSE compiler
infrastructure is introduced in the next section. Section 3 discusses high-level
abstractions and explores parallelization strategies for several representative
kernels. Section 4 then presents the details of a semantic-aware parallelizer
built using ROSE. Preliminary results of our work are given in Section 5.
Section 6 discusses related work. Finally, Section 7 presents our conclusions
and the future directions of this work.

2 The ROSE Compiler Infrastructure

ROSE [22, 24, 30] is an open source compiler infrastructure to build source-
to-source program transformation and analysis tools for large-scale C/C++,
Fortran, OpenMP and UPC applications. Given its fully type-resolved abstract
syntax tree (AST), ROSE faithfully preserves the representation of high-level
abstractions at the source level, no required information to recognize such ab-
stractions is lost and the associated semantics can be reliably inferred. Using a
source-to-source approach, ROSE complements existing vendor compilers by
providing a fundamentally extensible way to simplify the optimization of stan-
dard and user-defined abstractions, thus helping achieving high performance
without losing high productivity.

Fig. 1 illustrates a typical source-to-source translator built using ROSE.
The Edison Design Group (EDG) front-end [11] is used to parse C (also UPC
extensions) and C++ applications. EDG source files and its IR are protected
under commercial or research licenses, but may be distributed freely in binary
form. Language support for Fortran 2003 (and earlier versions) is based on
the open source Open Fortran Parser (OFP) [28] developed at Los Alamos
National Laboratory. Leveraging both EDG and OFP, ROSE creates a com-
mon object-oriented, open-source IR for C/C++ and Fortran. The ROSE IR
includes an abstract syntax tree (AST), symbol tables, a control flow graph,
etc. and is based loosely on the Sage++ IR design [7]. Also, a set of distributed
symbol tables is associated with the AST to store symbols’ information within
each scope. Generic and custom program analysis and transformation can be
built on top of the ROSE IR. The ROSE unparser generates source code in the
original source language from the transformed AST, with all original comments
and C preprocessor control structures preserved. Finally, a vendor compiler is
optionally called to continue the compilation of the generated (transformed)
source code, generating a final executable.

The ROSE AST, together with its corresponding symbol tables, fully sup-
ports type resolution, semantic analysis, and overloaded function resolution.
All information in the application source code is preserved in the AST, in-
cluding C preprocessor control structure, source comments, source position
information, token stream (including whitespace), and C++ template infor-
mation. The ROSE AST also has a rich set of interfaces for building source

4

C/C++/Fortran/
OpenMP/UPC

Transformed
Source Code

EDG Front-end/
Open Fortran Parser

IR
(AST)

EDG/Fortran-to-
ROSE Connector

Program
Analysis

Program
Transformation

ROSE Unparser

Vendor
Compiler

USER

ROSE

Fig. 1 A source-to-source translator built using ROSE

code analyzers and source-to-source translators. These interfaces support effi-
cient AST traversals, AST node queries, AST construction, copying, insertion,
removal, and symbol table lookups. Moreover, persistent attributes are intro-
duced in the AST to easily store and evaluate arbitrary user-defined informa-
tion, including AST annotations. These attributes are persistent in that they
are preserved when the AST is written out to (and read in from) a binary file.

A number of program analyses and transformations have been developed
for ROSE. They are designed to be utilized by users via calling simple function
interfaces. The program analyses available include call graph analysis, control
flow analysis, data flow analysis (def-use chain, reaching definition, live vari-
ables, alias analysis etc.), class hierarchy analysis and dependence analysis.
Representative program translations developed with ROSE are partial redun-
dancy elimination, constant folding, inlining, outlining [19] (separating out a
portion of code as a function), and loop transformations [34] (a loop optimizer
supporting aggressive loop optimizations such as fusion, fission, interchange,
unrolling and blocking).

ROSE is released under a BSD-style license and is portable to Linux and
Mac OS X on IA-32 and x86-64 platforms. Porting ROSE to Microsoft Win-
dows platforms is currently a work in progress.

3 High-Level Abstractions and Parallelization

General purpose languages typically permit the construction of abstractions;
represented by functions, data structures, etc. These permit representations
of typically user-defined concepts. Modern object-oriented languages, such as
C++, support more complex abstractions including classes, member functions,
etc. High-level abstractions are designed to hide their complex implementation
details and only conveniently expose simple user-friendly interfaces. Program-

5

mers today are encouraged to use high-level abstractions in order to reduce
software complexity and improve programming productivity.

However, there is a common perception that using high-level abstractions
often leads to inferior performance. The reason is that the exact informa-
tion hiding mechanism of abstractions significantly impedes conventional com-
piler optimizations, including automatic parallelization, which rely on accurate
static code analyses of low-level implementations.

On the other hand, abstractions are naturally associated with all kinds
of standard or user-defined meanings, also called semantics. For instance, a
std:: set container means the stored objects are unique and sorted; the mem-
ber function list :: size () has read-only semantics. Obviously, knowledge of the
semantics of the abstractions can be a short-cut for program analysis based
on the implementation of an abstraction. In the case of complex abstractions
with semantics hidden behind the use of pointers and function calls, leveraging
known or published semantics of the abstractions can often be more produc-
tive. As an example, the knowledge that elements in an std:: list are distinct
is critical to numerous optimization opportunities, but it might be impossible
to obtain from an analysis of a specific STL implementation because of the
complexity of its internal pointer handling.

By recognizing high-level abstractions and exploiting their well-defined se-
mantics, compilers can significantly enhance the applicability and accuracy
of existing analyses and optimizations. Such work also serves to encourage
libraries to define abstractions with well-defined semantics. For instance, tra-
ditional parallelization algorithms designed for primitive data types can be
extended to handle applications using high-level abstractions if the applica-
tions demonstrate similar semantic properties and satisfy the semantic con-
straints of the algorithms. The semantics of abstractions often directly indicate
the side effects of function calls and such knowledge can significantly benefit
parallelization which is often disabled because the inability to accurately sum-
marize read and write accesses hidden behind call sites.

In the following subsections, we examine several typical candidates and
explore parallelization strategies for applications using high-level abstractions.

3.1 An Array-Based Computation Loop

Loops operating on fixed-sized arrays are probably the most popular and rep-
resentative examples for automatic parallelization using OpenMP. Typically,
an array-based computation loop parallelizable by using omp parallel for has
the following properties:

1. The loop has a canonical form (for (initialization ; test ; increment) block) which
satisfies certain requirements, as defined by the OpenMP specification.

2. The loop operates on arrays using contiguous memory locations for a set
of elements of the same type (also size).

3. The elements of arrays do not overlap in memory or alias each other.

6

4. Random element accesses with a constant cost can be achieved by calcu-
lating offsets from an array base using subscripts.

5. The operations on the arrays do not rearrange the memory layout of ele-
ments and invalidate their accesses using subscripts across different itera-
tions.

6. There are no loop-carried data dependencies for array element accesses.

Conventional parallelization algorithms rely on a set of transformations
and analyses in order to judge the safety of parallelization.1 For example, loop
normalization is conducted to produce a canonical form, if possible. Alias anal-
ysis is used to tell if there are aliased elements. A set of data dependence tests
based on array subscripts are used to determine if different loop iterations are
independent. The conventional automatic parallelization algorithms can be ex-
tended to handle high-level, array-like abstractions by leveraging their seman-
tics and applying the conventional analyses and transformations extended to
handle such abstractions. We take the following STL vector computation loop
(shown in Fig. 2) as an example to explore a viable parallelization method of
abstractions. The method is generic so that it can be applied to other high-level
abstractions with similar semantics, including the STL deque or user-defined
array-like types.

1 std : : vector<int> v1 (1 0 0) ;
2 for (int i = 0 ; i < 100 ; i++)
3 v1 [i] = v1 [i] + i ;

Fig. 2 A loop operating on an STL vector

The STL vector type has many semantics (e.g., iterator invalidation rules)
which can be taken advantage of by automatic parallelization. As a sequen-
tial container with contiguous storage for its elements, it supports random
element access via both iterators and member functions (operator[] and at()).
Although a vector can be reallocated or resized during its lifetime, it is quite
common to have computation phases in which the vector participates in com-
putations as if it was a fixed-sized primitive array. Within these phases, the
arguments of random element access functions can be directly treated as ar-
ray subscripts and passed to relevant parallelization analysis, especially ar-
ray dependence analysis. The elements of the vector have to be verified to be
alias-free and non-overlapping, either by compiler analyses or user annotations.
Even for a loop using random access iterators, an extended loop normaliza-
tion phase can convert the loop into a canonical form that is friendly to par-
allelization. For example, for(vector<T>::iterator i = v.begin(); i != v.end(); i++)

can be transformed to size t n = v.size (); for (size t i = 0; i < n; i++). Deref-
erences of the iterator within the loop body can be replaced with equivalent

1 We ignore the profitability analysis here as it can be treated as a relatively independent
analysis and is out of the scope of this paper.

7

element access function calls. In this case, all variable accesses like (∗ i) and
i [n] are replaced with v[i](or v.at(i)) and v[i + n] (or v.at(i + n)) respectively
according to the semantics defined in the language standard.

In summary, based on a type-preserving IR and the knowledge about se-
mantics associated with high-level abstractions, conventional parallelizing al-
gorithms can be extended to conduct necessary analyses and transformations
for eligible loops operating on any high-level abstractions demonstrating array-
like semantics.

3.2 A Loop with Task-Level Parallelism

OpenMP 3.0 allows programmers to explicitly create tasks, which enable more
parallelization opportunities, especially for algorithms applying independent
tasks on non-random accessible data sets, or those using pointer chasing, re-
cursion and so on. It is worthwhile to study how the semantics of high-level
abstractions can facilitate parallelization targeting task level parallelism.

An example using the STL list is shown in Fig. 3 as a typical candidate
for parallelization using an omp task directive combined with an omp single

within an omp parallel region:

1 std : : l i s t <myType> : : i t e r a t o r i ;
2 for (i = my l i s t . begin () ; i != my l i s t . end () ; i++)
3 proce s s (∗ i) ;

Fig. 3 A loop operating on list elements

In order to parallelize the loop, a parallelization algorithm has to recognize
the following program properties (a conservative case of parallelizable loops):

1. Whether the container supports random access, thus enabling the use of
omp for; omp task is allowed in either case.

2. The elements in the container do not alias or overlap.
3. At most one element accessed via the loop index variable, we refer it as the

current element, is written within each iteration (no loop-carried output
dependence among the elements).

4. The loop body does not read elements other than the current element if
there is at least one write access to the current element (no loop-carried
true dependence or antidependence among the elements).

5. There are no other loop-carried dependencies caused by variable references
other than accessing the elements in the container.

A parallelization algorithm can significantly benefit from the known se-
mantics of standard and user-defined high-level abstractions when dealing
with applications using abstractions. It is essential that individual iterations
of the loop be independent; substantial analysis is required to verify this. For

8

instance, STL lists do not support random access. Knowing the usage of itera-
tors will help to identify the loop index variable which does not have an integer
type and is critical to recognize the reference to the current element by itera-
tor dereferencing. Element accesses using other than dereferencing the index
iterator, such as front () and back(), can be conservatively treated as accesses to
non-current elements. Many standard and custom functions have well-defined
side effects on both function parameters and/or global variables. Therefore
compilers can skip costly side effect analysis for those functions, such as size ()

and empty() for STL containers. Domain-specific knowledge can even be used
to ensure the uniqueness of elements within a container to be processed as an
alternative to conventional alias and pointer analysis. For example, a list of C
function definitions returned by a ROSE AST query function has unique and
non-overlapping elements.

3.3 A Domain-Specific Tree Traversal

We further discuss a specific example from a static analysis tool, namely Com-
pass [27], which is a ROSE-based framework for writing static code analysis
tools to detect software defects or bugs. Compass provides common functional-
ities needed for most static code analysis, including preparing necessary com-
piler analyses and AST traversal. In most cases, developers are only required
to provide a visitor function that checks for defects or bugs based on an AST
traversal and associated analysis results.

A typical Compass checker’s kernel is given in Fig. 4. It is a visitor function
to detect any error-prone usage of relational comparison, including <, >, ≤,
and ≥, on pointers (MISRA Rule 5-0-18 [32]). A recursive tree traversal func-
tion walks an input code’s AST and invokes the visitor function on each node.
Once a potential defect is found, the AST node is stored in a list (output) for
later display. One important semantic constraint for Compass checkers is that
they should not have side-effects on the input code’s AST. Most functions (in-
formation retrieval functions like get ∗() and type casting functions like isSg∗())
used in the function body have read-only semantics.

Even with ideal side effect analysis and alias analysis, a conventional par-
allelization algorithm will still have trouble in recognizing the kernel as an
independent task. The reason is that the write access (line 12) to the shared
list will cause an output dependence among different threads, which prevents
possible parallelization. However, the kernel’s semantics imply that the order
of the write accesses does not matter, which makes this write access suitable
to be protected using omp critical. Since there is no easy way to detect such
semantics by existing compiler analyses, directly communicating such seman-
tics to compilers is essential to eliminate the output dependence after adding
the synchronization construct and finally make the function body thread-safe.

Another piece of semantic knowledge will enable an even more dramatic
optimization. The AST traversal used by Compass checkers does not care
about the order of nodes being visited. So it is semantically equal to a loop

9

1 void
2 CompassAnalyses : : PointerComparison : : Traver sa l : : v i s i t (SgNode∗ node)
3 {
4 SgBinaryOp∗ bin op = isSgBinaryOp (node) ;
5 i f (b in op)
6 {
7 i f (isSgGreaterThanOp (node) | | isSgGreaterOrEqualOp (node) | |
8 isSgLessThanOp (node) | | isSgLessOrEqualOp (node))
9 {

10 SgType∗ l h s t yp e = bin op−>ge t l h s ope rand ()−>ge t type () ;
11 SgType∗ rh s type = bin op−>ge t rh s ope rand ()−>ge t type () ;
12 i f (i sSgPointerType (l h s t yp e) | | i sSgPointerType (rhs type))
13 output−>addOutput (bin op) ;
14 }
15 }
16 }

Fig. 4 A Compass checker’s kernel

over the same AST nodes. The AST nodes are stored in memory pools, as
in most other compilers [9]. The memory pools in ROSE are implemented as
arrays of each type of IR node stored consecutively. Converting a recursive tree
traversal into a loop over the memory pools is often beneficial due to better
cache locality and less function call overhead. The loop is also more friendly
to most analyses and optimizations than the original recursive function call,
and importantly to this paper, can be automatically parallelized. In a more
aggressive optimization, the types of IR nodes analyzed by the checker can be
identified and only the relevant memory pools will be searched.

4 A Semantic-Aware Parallelizer

We have been working on a parallelizer using ROSE to automatically paral-
lelize target loops and functions by introducing either omp for or omp task,
and other required OpenMP directives and clauses. It is designed to handle
both conventional loops operating on primitive arrays and modern applica-
tions using high-level abstractions. The parallelizer (shown in Fig.5) uses the
following algorithm:

1. Preparation and Preprocessing
(a) Read a specification file for known abstractions and semantics.
(b) Apply optional custom transformations based on input code semantics,

such as converting tree traversals to loop iterations on memory pools.
(c) Normalize loops, including those using iterators.
(d) Find candidate array computation loops with canonical forms (for omp for)

or loops and functions operating on individual elements (for omp task).
2. For each candidate:

(a) Skip the target if there are function calls without known semantics or
side effects.

10

(b) Call liveness analysis and dependence analysis.
(c) Classify OpenMP variables (autoscoping), recognize references to the

current element, and find order-independent write accesses.
(d) Eliminate dependencies associated with autoscoped variables, those

involving only current elements, and output dependencies caused by
order-independent write accesses.

(e) Insert the corresponding OpenMP constructs if no dependencies re-
main.

Abstraction and
Semantics

Specification

Serial Code

OpenMP
Code

Custom
Optimization

Loop
Normalization

Dependence
Analysis

Variable
Classification

Dependence
Elimination

Liveness
Analysis

Fig. 5 A semantic-aware parallelizer built using ROSE

The key idea of the algorithm is to capture dependencies within a target
and eliminate them later on as much as possible based on various special
conditions (explained in the step (d) of the algorithm). Parallelization is safe
if there are no remaining dependencies. Semantics of abstractions are used
in almost each step to facilitate the transformations and analyses, including
recognizing function calls as variable references, identifying the current element
being accessed, and ensuring if there are constraints on the ordering of write
accesses to shared variables.

The custom transformation for optimizing the Compass checkers is straight-
forward to implement in ROSE since the Compass checkers are derived from
an AST traversal class to implement its capability of AST traversal. ROSE
already provides AST traversal classes using either recursive tree traversal or
loops over memory pools. Changing the checkers’ superclass will effectively
change the traversal method. Similar to other work [5], our variable classifica-
tion is largely based on the classic live variable analysis and idiom recognition
analysis to identify variables that could be classified as private, firstprivate,
lastprivate, and reduction.

11

We give more details of the parallelizer and its handling of high-level ab-
stractions in the following subsections.

4.1 Recognizing High-Level Abstractions and Semantics

ROSE uses a high-level AST which permits the high fidelity representation
of both standard and user-defined abstractions in their original source code
forms without loss of precision. As a result, program analyses have access
to the details of high-level abstraction usage typically lost in a lower level IR.
The context of those abstractions can be combined with their known semantics
to provide fundamentally more information than could be known from static
analysis alone.

Although semantics of standard types and operations can be directly in-
tegrated into ROSE to facilitate parallelization, a versatile interface is still
favorable to accommodate semantics of user-defined types and functions. As a
prototype implementation, we extend the annotation syntax proposed by [34]
to manually prepare the specification file representing the knowledge of known
types and semantics. A future version of the file will be expressed in C++ syn-
tax to facilitate handling.

The original annotation syntax was designed to allow conventional serial
loop optimizations to be applied on user-defined array classes. As a result, it
only contains annotation formats for array classes to indicate if the classes are
arrays (array) and their corresponding member access functions for array size
(length()) and elements(element()). It also allows users to explicitly indicate
read (read), written (modify), and aliased (alias) variables for class operations
or functions to complement compiler analysis. We have extended the syntax to
accept C++ templates in addition to classes. In particular, is fixed sized array

is used instead of array to make it clear that a class or template has a set of op-
erations which conform to the semantics of a fixed size array, not just any array.
Although standard or user-defined high level array abstractions may support
some size changing operations such as resize (), those non-conforming opera-
tions are not included in the specification file and will be treated as unknown
function calls. The semantic-aware parallelizer will safely skip loops containing
such function calls as shown in our algorithm. New semantic keywords have
also been introduced to express knowledge critical to parallelization, such as
overlap, unique, and order independent.

An example specification file is given in Fig. 6. It contains a list of quali-
fied names for classes or instantiated class templates with array-like semantics,
and their member functions for element access, size query, and other opera-
tions preserving the relevant semantics. We also specify side effects of known
functions, uniqueness of returned data sets, order-independent write accesses,
and so on.

12

1 class std : : vector<MyType> {
2 // elements are a l i a s−f r e e and non−over l app ing
3 al ias none ; overlap none ;
4 // semantic−pre se rv ing func t i ons as a f i x ed−s i z e d array
5 is f ixed sized array {
6 length (i) = { this . s i z e () } ;
7 element (i) = { this . operator [] (i) ; this . at (i) ; } ;
8 } ;
9 } ;

10
11 void my process ing (SgNode∗ f un c de f) {
12 // s i d e e f f e c t s o f a func t i on
13 read{ f un c de f } ; modify { f un c de f } ;
14 }
15
16 std : : l i s t <SgFunctionDef∗> f i ndCFunct i onDe f in i t i on (SgNode∗ root){
17 read { root } ; modify { result } ;
18 // return a unique s e t
19 return unique ;
20 }
21
22 void Compass : : OutputObject : : addOutput (SgNode∗ node){
23 //order−independent s i d e e f f e c t s
24 read {node } ;
25 modify {Compass : : OutputObject : : outputList<order independent>};
26 }

Fig. 6 A semantics specification file

4.2 Dependence Analysis

We generate dependence relations for both eligible loop bodies and function
bodies to explore the parallelization opportunities. We compute all dependence
relations between every two statements s1 and s2, including the case when s1

is equal to s2, within the target loop body or function body. Each dependence
relation is marked as local or thread-carried (either loop-carried and task-
carried).

The foundation of the analysis is the variable reference collection phase,
in which all variable references from both statements are collected and cate-
gorized into read and write variable sets. In addition to traditional scalar and
array references, each member function call returning a C++ reference type
is checked against the known high-level abstractions and semantics to see if
it is semantically equivalent to a subscripted element access of an array-like
object. ROSE’s high level AST makes this work easy. For example, a reference
to an STL vector element (v1[i]) in ROSE’s AST is represented as a node
of a function call expression (SgFunctionCallExp) with two children: a dot ex-
pression (SgDotExp) and an expression list of function parameter expressions
(SgExprsListExp). The dot expression in turn has two children: a variable ref-
erence expression (SgVarRefExp) and a member function reference expression
(SgMemberFunctionRefExp). An internal function, is array (), is used to resolve

13

the type of the object (SgVarRefExp of the dot expression) implementing the
member function call and compare it to the list of known array types as given
in the specification file. If the resolved type turns out to be an instantiated
template type, its original template declaration is used for the type comparison
instead. Consequently, is element access () is applied to the function call to check
for a member function reference expression (SgMemberFunctionRefExp) which is
equal to an array element access and obtain its subscripts from the function’s
parameter list (SgExprsListExp). Read and write variable sets of other known
functions are also recognized and the affected variables are collected.

After that, a dependence relation is generated for each pair of references,
r1 from s1’s referenced variable set and r2 from s2’s, if at least one of the ref-
erences is a write access and both of them refer to the same memory location
based on their qualified variable names or the alias information in the specifi-
cation file. For array accesses within canonical loops, a Gaussian elimination
algorithm is used to solve a set of linear integer equations of loop induction
variables. The details of the array dependence analysis can be found in [2].

5 Preliminary Results

As this work is an ongoing project (the current implementation is released
with the ROSE distribution downloadable from our website [26]), we present
some preliminary results in this section.

Several sequential kernels in C and C++ were chosen to test our automatic
parallelization algorithm on both primitive types and high-level abstractions.
As shown in Table 1, they include a C version Jacobi iteration converted
from [29] operating on a 500 × 500 double precision array, a C++ vector 2-
norm distance calculation (

√∑n
i=1 (xi − yi)2) on 120 million elements, a web

server simulation kernel processing independent HTTP requests from a queue
storing 1000 requests implemented using stl :: list (kernel is shown in Fig. 3),
and a Compass checker (shown in Fig. 4 for MISRA Rule 5-0-18 [32]) applied
on a ROSE source file (Cxx Grammar.C) with approximately 293K lines of
code (LOC).

Code Description Language Data Structure Data Size
Jacobi Stencil computation C 2-D array 500x500
2-norm Distance calculation C++ stl::vector 120 million
WebServer Web server simulation C++ stl::list 1K requests
Compass Static code analysis C++ User classes 293K LOC

Table 1 Sequential test kernels

With the help of the semantics specification file, the ROSE parallelizer
could successfully parallelize all the test kernels using either primitive data
types or complex abstraction types. Both the OpenMP loop construct (omp for)
and task construct (omp task) could be introduced properly (as shown in

14

1 #define MSIZE 500
2 double u [MSIZE] [MSIZE] , f [MSIZE] [MSIZE] , uold [MSIZE] [MSIZE] ;
3 /∗ . . code omitted . . . ∗/
4
5 #pragma omp paral le l for private (j , r e s i d) reduction (+: error)
6 for (i =1; i <(n−1); i++)
7 for (j =1; j <(m−1); j++)
8 {
9 r e s i d = (ax ∗(uold [i −1] [j] + uold [i +1] [j]) \

10 + ay ∗(uold [i] [j −1] + uold [i] [j +1]) \
11 + b ∗ uold [i] [j] − f [i] [j]) / b ;
12
13 u [i] [j] = uold [i] [j] − omega ∗ r e s i d ;
14 e r r o r = e r r o r + r e s i d ∗ r e s i d ;
15 }

Fig. 7 Parallelized Jacobi kernel

1 std : : vector <double> v1 (SIZE) , v2 (SIZE) ;
2 // vec tor i n i t i a l i z a t i o n code omitted here . . .
3 #pragma omp paral le l for private (i) reduction (+: result)
4 for (i =0; i<SIZE ; i++)
5 result=result + (v1 . at (i)−v2 . at (i))∗ (v1 . at (i)−v2 . at (i)) ;
6 result = sqr t (result) ;

Fig. 8 Parallelized vector 2-norm distance calculation kernel

1 // code omitted here . . .
2 std : : l i s t <httpRequest> r eques t queue ;
3 std : : l i s t <httpRequest > : : i t e r a t o r i ;
4
5 #pragma omp paral le l
6 {
7 #pragma omp single
8 for (i = reques t queue . begin () ; i != reques t queue . end () ; i++)
9 {

10 #pragma omp task
11 proce s s (∗ i) ;
12 }
13 }

Fig. 9 Parallelized web server simulation kernel

Fig. 7– Fig. 10). The generated OpenMP versions were further compiled using
our own OpenMP translator, which is a ROSE-based OpenMP 3.0 implemen-
tation targeting the GCC OpenMP runtime library (GOMP) [1]. Internally,
our OpenMP translator invokes the ROSE outliner [19] to outline code por-
tions to generate parallel tasks. GCC 4.4.1 was used as the backend compiler
with an optimization option -O3. We ran the experiments on a Dell Precision
T5400 workstation with two sockets, each a 3.16 GHz quad-core Intel Xeon
X5460 processor, and 8 GB memory.

15

1 //A super c l a s s prov ides p a r a l l e l t r a v e r s a l on memory poo l
2 //This i s manually prepared .
3 class pa r a l l e lT r a v e r s a l
4 {
5 public :
6 void t r a v e r s e ()
7 {
8 #pragma omp paral le l for private (j) shared (memoryPool)
9 for (j =0; j<memoryPool . s i z e () ; j++)

10 v i s i t (memoryPool [j]) ;
11 }
12 protected :
13 virtual void v i s i t (SgNode∗ node) ;
14 // code omitted here . .
15 } ;
16
17 // I t was made thread−sa f e a f t e r au tomat i ca l l y i n s e r t i n g ’omp c r i t i c a l ’ .
18 // The o r i g i n a l super c l a s s was rep laced with p a r a l l e lT r a v e r s a l .
19 void
20 CompassAnalysis : : PointerComparison : : p a r a l l e l T r a v e r s a l : : v i s i t (SgNode∗ node)
21 {
22 SgBinaryOp∗ bin op = isSgBinaryOp (node) ;
23 i f (b in op)
24 {
25 i f (isSgGreaterThanOp (node) | | isSgGreaterOrEqualOp (node) | |
26 isSgLessThanOp (node) | | isSgLessOrEqualOp (node))
27 {
28 SgType∗ l h s t yp e = bin op−>ge t l h s ope rand ()−>ge t type () ;
29 SgType∗ rh s type = bin op−>ge t rh s ope rand ()−>ge t type () ;
30 i f (i sSgPointerType (l h s t yp e) | | i sSgPointerType (rhs type))
31 {
32 #pragma omp cr i t i ca l
33 outputL i s t . push back (bin op) ;
34 }
35 }
36 }
37 }

Fig. 10 Parallelized compass checker

Fig. 11 gives the speedups of all the test kernels after domain-specific op-
timization (optional) and parallelization compared to their original sequential
executions. The results demonstrate that our semantic-aware parallelization
algorithm is able to capture the parallelization opportunities associated with
both primitive data types and high-level abstractions. In particular, the op-
timization of replacing the tree traversal with a loop iteration for the Com-
pass checker directly contributed to a performance improvement of 35% of the
single-thread execution compared to the original sequential execution. Auto-
matic parallelization helped most tests to achieve linear or near-linear speedup,
except for the 2-norm calculation. The critical section within the checker’s par-
allel region made a linear speedup impossible when 7 and 8 threads were used.
This is also true for Jacobi in which a reduction operation exists. One possi-

16

ble reason for the non-linear speedup of the 2-norm vector calculation is that
its computation requirement is not large enough to scale up for more than
4 threads (It only took 0.3 seconds to finish the execution when 4 threads
were used). Performance degradation happened when 5 or more threads were
used. However, 120 million was already the biggest vector size we could use
without causing GCC to send the std::bad alloc exception. More dramatic per-
formance improvements for the Compass checker can be obtained if only the
relevant memory pools are searched but this step is not yet automated in our
implementation.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of threads

Jacobi
2-norm

WebServer
Compass

Fig. 11 Speedup of the example programs after parallelization

6 Related Work

Automatic parallelization of sequential code using compilers and tools has
been pursued by researchers for several decades [10,18,35]. We only mention a
few of parallelizing compilers and tools for brevity. The Vienna Fortran com-
piler (VFC) [4] is a source-to-source parallelization system for an optimized
version of High Performance Fortran. The Polaris compiler [6] is mainly used
for improving loop-level automatic parallelization. The SUIF compiler [33] was
designed to be a parallelizing and optimizing compiler supporting multiple lan-
guages. Sophisticated interactive environments have also been created to inte-
grate user knowledge (e.g. SUIF Explorer [20], Polaris [6] and Parawise [14]).
However, to the best of our knowledge, current parallelizing compilers and tools

17

largely focus on Fortran and/or C applications. Commercial parallelizing com-
pilers like the Intel C++/Fortran compiler [5] also use OpenMP internally as
a target for automatic parallelization. Our work in ROSE aims to complement
existing work by providing a source-to-source, extensible parallelizing com-
piler infrastructure targeting modern object-oriented applications using both
standard and user-defined high-level abstractions.

Several papers in the literature present parallelization efforts for C++
Standard Template Library (STL) or generic libraries. The Parallel Standard
Template Library (PSTL) [13] uses parallel iterators and provides some par-
allel containers and algorithms. The Standard Template Adaptive Parallel Li-
brary (STAPL) [3] is a superset of the C++ STL. It supports both automatic
parallelization and user specified parallelization policies with several major
components for containers, algorithms, random access range, data distribution,
scheduling and execution. GCC 4.3’s runtime library (libstdc++) provides an
experimental parallel mode, which implements an OpenMP version of many
C++ standard library algorithms [31]. Kambadur et al. [15] proposes a set
of language extensions to better support C++ iterators and function objects
in generic libraries. However, all library-based parallelization methods require
users to make sure that their applications are parallelizable. Our work auto-
matically ensures the safety of parallelization based on semantics of high-level
abstractions and compiler analyses.

Some previous research has explored code analyses and optimizations for
high-level abstractions. The Telescoping language project [8, 16] was aimed
to develop a framework for automatically generating custom optimizing com-
pilers for domain-specific languages and libraries. ROSE, on the other hand,
uses a more pragmatic approach to allow average programmers to write cus-
tomized analyses and optimizations for abstractions. Kulkarni et. ali [17] ex-
plored the use of abstractions and semantics, including un-ordered set, com-
mutativity, inverse and so on for parallelization. They focused on language
and runtime support for optimistic parallelization while we aim to extend the
classic compiler-based parallelization. STLlint [12] performs static checking
for STL usage based on symbolic execution. Yi and Quinlan [34] developed
a set of sophisticated semantic annotations to enable conventional sequen-
tial loop optimizations on user-defined array classes. Quinlan et al. [23, 25]
presented the parallelization opportunities solely using the high-level seman-
tics of A++/P++ libraries and user-defined C++ containers without using
dependence analysis. This paper combines both standard and user-defined se-
mantics with compiler analyses to further broaden the applicable scenarios of
automatic parallelization. We also consider the new OpenMP 3.0 features and
domain-specific optimizations.

7 Conclusions and Future Work

In this paper, we have explored the impact of high-level abstractions on auto-
matic parallelization of C++ applications and designed a parallelization algo-

18

rithm to take advantage of the capability of the ROSE source-to-source com-
piler infrastructure and the known semantics of both standard and user-defined
abstractions. Though only three representative cases have been examined, our
approach is very generic so that additional STL or user-defined semantics
which are important to parallelization can be discovered and incorporated into
our implementation. Our work demonstrates that semantic-aware paralleliza-
tion is a very feasible and powerful approach to capture more parallelization
opportunities than conventional parallelization methods for multicore archi-
tectures. Our approach can also be seamlessly integrated with conventional
analysis-driven parallelization algorithms as a significant complement or en-
hancement.

In the future, we will apply our method on large-scale C++ applications to
recognize and classify more semantics which can be critical to parallelization.
We are planning to extend our work to support applications using more com-
plex and dynamic control flows such as pointer chasing and use more OpenMP
construct types. Further work also includes investigating the impact of poly-
morphism used in C++ applications, exploring the interaction between the
automatic parallelization and conventional loop transformations, and leverag-
ing semantics for better OpenMP optimizations as well as correctness analyses.

Acknowledgements This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. We thank Dr. Qing Yi for her dependence analysis implementation in ROSE.

References

1. GOMP – An OpenMP implementation for GCC. http://gcc.gnu.org/projects/gomp

(2008)
2. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A Dependence-

based Approach. Morgan Kaufmann (2001)
3. An, P., Jula, A., Rus, S., Saunders, S., Smith, T., Tanase, G., Thomas, N., Amato, N.M.,

Rauchwerger, L.: STAPL: An adaptive, generic parallel C++ library. In: Languages and
Compilers for Parallel Computing (LCPC), pp. 193–208 (2001)

4. Benkner, S.: VFC: The Vienna Fortran Compiler. Scientific Programming 7(1), 67–81
(1999)

5. Bik, A., Girkar, M., Grey, P., Tian, X.: Efficient exploitation of parallelism on Pentium
III and Pentium 4 processor-based systems. Intel Technology Journal 5 (2001)

6. Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T., Lee, J.,
Padua, D., Paek, Y., Pottenger, B., Rauchwerger, L., Tu, P.: Parallel programming with
Polaris. Computer 29(12), 78–82 (1996). DOI http://dx.doi.org/10.1109/2.546612

7. Bodin, F., et al.: Sage++: An object-oriented toolkit and class library for building
Fortran and C++ restructuring tools. In: Proceedings of the Second Annual Object-
Oriented Numerics Conference (1994)

8. Broom, B., Cooper, K., Dongarra, J., Fowler, R., Gannon, D., Johnsson, L., Kennedy,
K., Mellor-Crummey, J., Torczon, L.: Telescoping languages: A strategy for automatic
generation of scientific problem-solving systems from annotated libraries. Journal of
Parallel and Distributed Computing (2000)

9. Cooper, K., Torczon, L.: Engineering a Compiler. Morgan Kaufmann (2003)
10. Cooper, K.D., Hall, M.W., Hood, R.T., Kennedy, K., McKinley, K.S., Mellor-Crummey,

J.M., Torczon, L., Warren, S.K.: The ParaScope parallel programming environment.
Proceedings of the IEEE 81(2), 244–263 (1993)

19

11. Edison Design Group: C++ Front End. http://www.edg.com

12. Gregor, D., Schupp, S.: STLlint: lifting static checking from languages to libraries. Softw.
Pract. Exper. 36(3), 225–254 (2006). DOI http://dx.doi.org/10.1002/spe.v36:3

13. Johnson, E., Gannon, D., Beckman, P.: HPC++: Experiments with the Parallel Stan-
dard Template Library. In: Proceedings of the 11th International Conference on Super-
computing (ICS-97), pp. 124–131. ACM Press, New York (1997)

14. Johnson, S.P., Evans, E., Jin, H., Ierotheou, C.S.: The ParaWise Expert Assistant –
Widening accessibility to efficient and scalable tool generated OpenMP code. In: WOM-
PAT, pp. 67–82 (2004)

15. Kambadur, P., Gregor, D., Lumsdaine, A.: OpenMP extensions for generic libraries. In:
International Workshop on OpenMP (IWOMP) (2008)

16. Kennedy, K., Broom, B., Chauhan, A., Fowler, R., Garvin, J., Koelbel, C., McCosh,
C., Mellor-Crummey, J.: Telescoping languages: A system for automatic generation of
domain languages. Proceedings of the IEEE 93(2), 387–408 (2005). DOI 10.1109/
JPROC.2004.840447

17. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.: Op-
timistic parallelism requires abstractions. Commun. ACM 52(9), 89–97 (2009). DOI
http://doi.acm.org/10.1145/1562164.1562188

18. Lamport, L.: The parallel execution of do loops. Commun. ACM 17(2), 83–93 (1974).
DOI http://doi.acm.org/10.1145/360827.360844

19. Liao, C., Quinlan, D.J., Vuduc, R., Panas, T.: Effective source-to-source outlining to
support whole program empirical optimization. In: The 22th International Workshop
on Languages and Compilers for Parallel Computing (LCPC). Newark, Delaware, USA
(2009)

20. Liao, S.W., Diwan, A., Robert P. Bosch, J., Ghuloum, A., Lam, M.S.: SUIF Explorer: an
interactive and interprocedural parallelizer. In: PPoPP ’99: Proceedings of the seventh
ACM SIGPLAN symposium on Principles and Practice of Parallel Programming, pp.
37–48. ACM Press, New York, NY, USA (1999). DOI http://doi.acm.org/10.1145/
301104.301108

21. OpenMP Architecture Review Board: The OpenMP specification for parallel program-
ming. http://www.openmp.org (2009)

22. Quinlan, D.: ROSE: Compiler support for object-oriented frameworks. In: In Proceed-
ings of Conference on Parallel Compilers (CPC) (2000)

23. Quinlan, D., Schordan, M., Yi, Q., de Supinski, B.: A C++ infrastructure for automatic
introduction and translation of OpenMP directives. In: Proceedings of the Worshop on
OpenMP Applications and Tools (WOMPAT), LNCS, vol. 2716, pp. 13–25. Springer-
Verlag (2003)

24. Quinlan, D.J., Schordan, M., Miller, B., Kowarschik, M.: Parallel object-oriented frame-
work optimization: Research articles. Concurr. Comput.: Pract. Exper. 16(2-3), 293–302
(2004). DOI http://dx.doi.org/10.1002/cpe.v16:2/3

25. Quinlan, D.J., Schordan, M., Yi, Q., de Supinski, B.R.: Semantic-driven parallelization
of loops operating on user-defined containers. In: Workshop on Languages and Compilers
for Parallel Computing, vol. 2958, pp. 524–538 (2003)

26. Quinlan, D.J., et al.: ROSE compiler project. http://www.rosecompiler.org/

27. Quinlan, D.J., et al.: Compass user manual. http://www.rosecompiler.org/compass.

pdf (2008)
28. Rasmussen, C., et al.: Open Fortran Parser. http://fortran-parser.sourceforge.net/
29. Robicheaux, J., Shah, S.: http://www.openmp.org/samples/jacobi.f (1998)
30. Schordan, M., Quinlan, D.: A source-to-source architecture for user-defined optimiza-

tions. In: JMLC’03: Joint Modular Languages Conference with EuroPar’03, Lecture
Notes in Computer Science, vol. 2789, pp. 214–223. Springer Verlag (2003)

31. Singler, J., Konsik, B.: The GNU libstdc++ parallel mode: software engineering con-
siderations. In: IWMSE ’08: Proceedings of the 1st international workshop on Mul-
ticore software engineering, pp. 15–22. ACM, New York, NY, USA (2008). DOI
http://doi.acm.org/10.1145/1370082.1370089

32. The Motor Industry Software Reliability Association: MISRA C++: 2008 Guidelines
for the use of the C++ language in critical systems (2008)

20

33. Wilson, R.P., French, R.S., Wilson, C.S., Amarasinghe, S.P., Anderson, J.A.M., Tjiang,
S.W., Liao, S.W., Tseng, C.W., Hall, M.W., Lam, M.S., Hennessy, J.L.: SUIF: An
infrastructure for research on parallelizing and optimizing compilers. SIGPLAN Notices
29(12), 31–37 (1994)

34. Yi, Q., Quinlan, D.: Applying loop optimizations to object-oriented abstractions through
general classification of array semantics. In: The 17th International Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC) (2004)

35. Zima, H.P., Bast, H., Gerndt, M.: Superb: A tool for semi-automatic MIMD and SIMD
parallelization. Proceedings of Parallel Computing 6(1), 1–18 (1988)

